May 1995 : UILU-ENG-95-2211
a CRHC-95-10

Center for Reliable and High Performance Computing

Recoverable Distributed Shared
Memory Under Sequential and
Relaxed Consistency

Bob Janssens and W. Kent Fuchs

_ DTIC _ |
QRELECTERR
| & uaaiionossl g gt

19950508 083

Coordinated Science Laboratory
College of Engineering
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Approved for Public Release. Distribution Unlimited. U

UNCLASSIFIED
SECURITY CLASSIFICATION OF YHIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION
Unclassified

b, RESTRICTIVE MARKINGS
None

0 S
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION / AVAILABILITY OF REPORT

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

Approved for public release;
distribution unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) .

| 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL
(If applicable)

N/A

6a. NAME OF PERFORMING ORGANIZATION
Coordinated Science Lab
University of Illinois

7a. NAME OF MONITORING ORGANIZATION
Office of Naval Research and NASA

6c. ADDRESS (Gty, State, and ZIP Code)

1308 W. Main ST.
urbana, IL 61801

7%. ADDRESS (City, State, ‘nd 2IP Code) Ames Research Ctr.

800 N. Quincy St. Moffett Field, CA
Arlington, VA 22217

8b. OFFICE SYMBOL
(if applicable)

8a. NAME OF FUNDING /SPONSORING
ORGANIZATION Joint Services

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

Arlington, VA 22217

N00014- -] _
Electronics Program 7a. = 90-J-1270 NASA NAG 1-613
8c. ADDRESS (City, State, and ZIP Code) - 10. SOURCE OF FUNDING NUMBERS
; 7b. PROGRAM PROJECT TASK WORK _UNIT
800 N. Quincy St. ' ELEMENT NO. | NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

Recoverable Distributed Shared Memory Under Sequential and Relaxed Consistency

12. PERSONAL AUTHOR(S)
Bob Janssens and W. Kent Fuchs

13a. TYPE OF REPORT 13b. TIME COVERED

Techni(@']; FROM TO

1S. PAGE COUNT
29

14. DATE OF REPORT (Year, Month, Day)
May 1995

e s

16. SUPPLEMENTARY NOTATION

17. COSAT! CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
checkpointing and rollback recovery, distributed shared

memory, memory consistency models

platform for executing parallel scientific applications.

consistent. The schemes can be implemented in DSM

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Distributed shared memory (DSM) implemented on a cluster of workstations is an increasingly attractive

Checkpointing and rollback techniques can be used

in such a system to allow the computation to progress in spite of the temporary failure of one or more pro-
cessing nodes. The complexity and overhead inherent in traditional message-passing checkpointing tech-
niques can be reduced by taking advantages of specific properties of DSM. In this paper we show that, if
designed correctly, a DSM system only needs to consider a subset of message-passing dependencies for
correct rollback. A passive server model of DSM computation is described that allows a loosening of
dependency restrictions by considering the events involved in interactions between nodes as atomic. An
ownership timestamp scheme is used to eliminate many of the dependencies related to keeping directories

hardware by simply redesigning the directory at the

network interface. Finally, we show that by relaxing the memory consistency model and using lazy release
consistency, it is possible to further relax dependency restrictions.

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT

X UNCLASSIFIEDAUNLIMITED [J SAME AS RPT. {J DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
Unclassified

22a. NAME OF RESPONSIBLE INDIVIDUAL

22b. TELEPHONE (Include Area Code) | 22c. OFFICE SYMBOL

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted.
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED

RECOVERABLE DISTRIBUTED SHARED MEMORY
UNDER SEQUENTIAL AND RELAXED CONSISTENCY

Bob Janssens and W. Kent Fuchs Adccesston For
“Ms oraax o
{ DTIC TAB
Center for Reliable and High-Performance Computing Unannounced 0
Coordinated Science Laboratory Justification. ..
University of Illinois
1308 West Main Street By

Urbana, IL 61801 Distributies, .
Avallability dbdes
April, 1995 Avail and/for.
Bist Spocial

Pﬁ,\
Abstract h~

Distributed shared memory (DSM) implemented on a cluster of workstations is an increasingly attractive
platform for executing parallel scientific applications. Checkpointing and rollback techniques can be used in
such a system to allow the computation to progress in spite of the temporary failure of one or more processing
nodes. The complexity and overhead inherent in traditional message-passing checkpointing techniques can
be reduced by taking advantages of specific properties of DSM. In this paper we show that, if designed cor-
rectly, a DSM system only needs to consider a subset of message-passing dependencies for correct rollback.
A passive server model of DSM computation is described that allows a loosening of dependency restrictions
by considering the events involved in interactions between nodes as atomic. Anownership timestamp scheme
is used to eliminate many of the dependencies related to keeping directories consistent. The schemes can be
implemented in DSM hardware by simply redesigning the directory at the network interface. Finally, we
show that by relaxing the memory consistency model and using lazy release consistency, it is possible to
further relax dependency restrictions.

Keywords: checkpointing and rollback recovery, distributed shared memory, memory consistency mod-
els.

This paper contains material previously presented inin the 23rd FTCS [24] and the 13th SRDS [25]. This research was supported
in part by the Office of Naval Research under contract N00014-91-1-1283, and by the National Aeronautics and Space Administration
(NASA) under Grant NASA NAG 1-613, in cooperation with the Illinois Computer Laboratory for Aerospace Systems and Software
(ICLASS).

1 Introduction

Increasingly, massively parallel supercomputers employ off-the-shelf workstations linked by a high-speed
network as building blocks [10, 38]. Distributed shared memory (DSM) provides the advantages of a shared
memory image in such systems. An all-software implementation of DSM has been shown to approach the
performance of a bus-based multiprocessor for a small number of processors [1 1]. For more scalable per-

formance, special purpose directory and interconnect hardware can be used to implement DSM [29, 35].

Checkpointing and rollback are commonly used to recover from detected processor errors in environ-
ments where high reliability is essential. The use of workstation clusters for parallel scientific computing
makes it desirable to have the ability to roll back to a saved state even when reliability demands are less crit-
ical. In a network, a workstation may kill a process or completely reboot, either due to a system exception,
or due to direct action by a user. In a networked workstation environment with multiple users, long-running
applications should not adversely impact other users. One method that can be used to ensure this is check-
pointing and recovery, as implemented in the Condor environment [32]. It is therefore desirable that long-
running parallel applications be able to roll back the computation on a processing node by restarting from a
checkpoint. In parallel systems, dependencies between processing nodes can cause the overall system state
to be incorrect when one node rolls back. The problem of rolling back to a consistent global state has been
widely investigated for message-passing systems. It is possible to directly apply this research to shared me-
mory, by modeling the system in terms of message passing. However, most previous work in shared-memory
recovery has used a laxer model of dependencies, using the intuition that only messages that transfer actual
application data should cause dependencies. This assumption simplifies tﬁe implementation of a recoverable
DSM, since many control messages do not need to be tracked. Furthermore, the performance overhead of

handling dependencies is reduced, and the potential for rollback propagation is decreased.

In this paper, we develop a design framework for recoverable DSM which guarantees that only data
. transfer dependencies need to be considered. We use a a passive server model of DSM, where interaction
events between processes are considered atomic. Together with an ownership timestamp scheme which re-

covers directory information independently, this model allows restriction of dependencies to the actual transfer

of blocks of data between nodes. Additionally, these dependencies are unidirectional, eliminating the need to
log in-transit messages. We also develop a scheme that uses a relaxed memory consistency model to further
limit the pattern of dependencies to only synchronization interactions. To avoid introducing spurious de-
pendencies due to false sharing, it is necessary to use lazy release consistency with multiple writers. The

complexity of this scheme makes it applicable to software DSM but unsuitable for hardware implementa-

tion.

Once the dependency pattern has been defined, any of the well-known techniques for distributed rollback
recovery can be applied to DSM. In this paper, we therefore focus on the basic problem of determining exactly

which dependencies need to be considered in any- rollback recovery scheme for DSM.

2 Rollback to a Consistent State in Parallel Systems

To enable rollback recovery in a parallel system, the state of each node is periodically saved as a checkpoint.
When one or more nodes roll back to a checkpoint, the resulting global state needs to be consistent, that is, it
needs to be a state that could have existed if no rollback had occurred. The global state of a message-passing
system contains any messages in transit, in addition to the the local state on each node [8]. In general non-
deterministic execution, to maintain a consistent state, when a node rolls back past the sending of a message,
the receiver must roll back to undo the effect of the message. Every message is therefore said to introduce a
dependency from the sender to the receiver. When a node rolls back past the receiving of a message, and the
sender does not roll back and re-send the message, some mechanism must be provided to retrieve the contents

of the message. If such a logging mechanism is not available, the sender must also roll back.

Various methods exist to ensure recovery to a consistent state, differing in the way they handle dependen-
cies. In globally coordinated checkpointing [14, 27, 30], when a node decides to checkpoint, it attempts to
create a global consistent checkpoint by sending messages to all other nodes, telling them to take a tentative
checkpoint. Because of propagation delay of the checkpointing messages it is possible that other messages
sent at about the same time introduce dependencies, causing the tentative checkpoints to be inconsistent and

therefore requiring adjustment in their locations. To handle the possibility of rollback during a checkpointing

session, it is necessary to implement a two-phase protocol, where tentative checkpoints are committed only
when it is assured that every node has taken a permanent checkpoint. Since the resulting global checkpoint
is consistent, correctness is assured by rolling back every node to the last checkpoint whenever one node
needs to roll back. The coordination algorithm can be optimized by adding continuous dependency tracking.
Then only processing nodes that have dependencies in the current checkpoint interval need to participate in

checkpointing and rollback {27].

In independent checkpointing, no effort is made to coordinate the checkpointing on the different pro-
cessing nodes [5, 41]. Therefore it is necessary to keep track of the pattern of dependencies between nodes
to determine which need to follow suit when one node‘rolls back. In order to handle in-transit messages, it
is necessary to log all communication in addition to tracking their dependencies. In this scheme, every de-
pendency carrying message introduces a chance of rollback propagation, which can escalate into a domino
effect. With loosely synchronized clocks, it is possible to use a timestamp-based checkpointing technique,
where the taking of checkpoints at approximately the same time on every node limits the necessity of de-
pendency tracking and message logging to a short time period around the time of checkpointing [12]. Some
schemes use communication-induced checkpointing, where every dependency induces a checkpoint on other

nodes, to eliminate rollback propagation.

Another class of recovery algorithms uses logging and deterministic replay to independently recover
failed processing nodes [37]. These algorithms are restricted to systems where the computation is guaran-
teed to be piecewise deterministic. Since all interactions with other nodes are logged, and the execution is
guaranteed to proceed exactly the same after rollback as before, no rollback propagation occurs if messages
are logged synchronously. If an optimistic scheme is used, where messages are logged asynchronously, de-

pendency tracking has to be used to guarantee correct recovery.

Various distributed system recovery techniques have been applied to shared memory. Communication-
induced checkpointing is used in the Sequoia system [4], by Wu et al. in both bus-based multiprocessors [43]
and software DSM systems [44], and by Janssens and Fuchs in DSM systems with relaxed consistency [24].
Ahmed et al. presented three schemes for bus-based systems that use globally coordinated, partially coor-

dinated and communication-induced checkpointing respectively [2]. Banétre et al. have proposed a scheme

that uses dependency tracking at the shared memory in a bus-based system to implement coordinated check-
pointing [3]. In an extension of this scheme to a cache-only memory architecture (COMA) DSM, Gefflaut
et al. use globally coordinated chieckpointing [18]. Janakiraman and Tamir also presented a coordinated
checkpointing scheme for DSM, eliminating some dependencies by using a dirty-since-checkpoint bit for
every page [23]. Various DSM schemes based on logging and deterministic replay have also been proposed

and implemented [15, 40, 34, 36].

It is intuitively obvious that the dependencies of message passing are too strict for shared-memory parallel
programs. For instance, two reads by different processors to a shared variable with no intervening writes do
not depend on each other even though both processors exchange messages with the shared memory element.
In the literature on replay for debugging in shared memory systems, a dependency from memory access a
to memory access b is generally said to exist if a accesses a shared variable that b later accesses, and at least
one of the two accesses is a write [33]. Various papers have recently ‘argued for treating a write as a two-way
dependency with a memory element, while treating a read as a one-way dependency from the memory to the

process [20, 22]. Therefore, there is no dependency from a read to a write if the read precedes the write.

This more relaxed dependency model can be used for rollback recovery only if there is no possibility of
deadlock due to processes waiting for messages that may never arrive. In bus-based systems, where bounded
transmission delay eliminates the need for acknowledgements, deadlock is avoided. In DSM systems, how-
ever, other measures have to be taken to avoid messaging deadlock. In the bus-based recovery scheme of
Banitre et al, a dependency is recorded between any processor that writes a data item and another that reads
it. A bidirectional dependency is recorded between two processors that write a data item consecutively [17].
Wu et al.’s recovery scheme takes a checkpoint of the originating process and of the data item accessed on
every data transfer between processing nodes [43, 44). J anakiraman’s scheme also considers only data trans-
fers in determining dependencies, using an optimization where a transfer of data that has not been modified

since the checkpoint does not cause a dependency [23]. The effect of all three schemes is to conform to the

more relaxed dependence relation.

3 The Passive Server Model of DSM

In the message-passing model, the dependencies caused by every message dictate the design of methods that
ensure rollback to a consistent state. Since intuitively it is clear that not all message-passing dependencies

need to be considered in DSM, a new model is necessary to reason about consistent rollback in DSM.

Program execution in a message-passing distributed system is modeled as a set of processes and a set of
reliable channels which the processes use to communicate with each other. Overall program execution is rep-
resented by a pair, P = (E, JL), where E is a set of events and — is the dependence relation defined over
E. Events within a process are ordered by the X9 (execution order) relation. Events on different processes
are ordered by the M, (message) relation where a M, bmeans event a sent a message and event b received
it. The —2» relation is the unidn of the other two: — = Xy Every event represents an atomic action
which may change the state in one of the processes. A special checkpoint event can be inserted between two

events to record the current state of the process.

When a process needs to roll back, it notifies all other processes and rolls back to a checkpoint. Upon
receiving notification of a rollback, a process can either roll back to a checkpoint, or continue operation. If it
continues, we can treat the current volatile state as a virtual checkpoint [42]. A global checkpoint is a set of
real and virtual checkpoints, one per process. Consider two events a and b, where b occurs in the execution
order before the global checkpoint and a occurs in the execution order after the global checkpoint. A global
checkpoint is consistent if there are no two such events such that a Mobord Lra A global checkpoint
is also consistent if lost messages can be retrieved during re-execution and there are no two events such that

M
a — b.

To simplify reasoning about consistency of global checkpoints it is useful to treat the %, relation as
bidirectional. To do this we replace every dependency a M, b, by a causal dependency a <, b, and a back-
ward dependency b B, a. Consider again two events a and b, where b occurs in the execution order before
a global checkpoint and a occurs in the execution order after a global checkpoint. The requirements for con-
sistency are now that there are no two such events such that a £, b and there are no two such events such

that b -2 a and the message between a and b is unlogged. Figure 1 presents some examples of consistent

— = causal

dependency
B
_ _ - = backward
dependency
Cc

H checkpoint

a) inconsistent b) consistent with logging ¢) consistent

Figure 1: Consistent and inconsistent global checkpoints.

and inconsistent global checkpoiﬁts. In Figure 1a, there is a causal dependency from after the checkpoint
on process A to before the checkpoint on process B, so the global checkpoint is inconsistent. In Figure 1b,
there are no causal dependencies from after the global checkpoint to before, so it is consistent if messages
can be replayed from a log. In Figure Ic, all dependencies begin and end before the global checkpoint, so it

is consistent with or without logging.

Our passive server model for DSM systems is derived from the message-passing model. We model program
execution in DSM systems as a set of client processes which run the application program and a set of pas-
sive server processes which provide a shared-memory image to the clients. The servers are considered passive
since they only change state due to interaction with a client. In the clients, events can be either internal events,
read events, or write events. Internal events only depend on and affect the local state of the process. Read
events send a read request to a local server, wait for areply with the value of a data item and then update their
local state with the value. Write events send a write request with a value to a local server and wait for a reply.
Events in servers are always triggered by the receipt of a request message, either from a client or another
server. Request messages are handled by the servers in FIFO order. After the request message is received,

server events may send and receive additional messages.

A write or read event in a client, together with the events it causes in the servers may be collectively called
an interaction. The passive server model differs from the message-passing model in that it collects all the
events in a process during an interaction into one single event. Figure 2 illustrates a typical write interaction in

DSM in terms of the passive server model. Since events are defined as atomic actions, a system only conforms

Node A:

W(X) » user process
Node A I -—=dependency
access server
inv.
ask for
write access Node B: event
ackn.
Node B manager server 7/ \
forward reply with access server
write request block and
copyset Node C:
Node C

access server

Figure 2: Typical write interaction in the passive server model.

to the passive server model if it 1s possible to guarantee the atomicity of interactions. Checkpointing events
are inserted as in the message-passing model. Note that checkpoints should be constrained to occur outside
interactions, so that events remain atomic. The passive server model contains all the dependencies of the
message-passing model. However, we shall show that its structure allows many of these dependencies to be

eliminated.

4 Design of a Recoverable DSM

We now outline the high-level design of a recoverable DSM system that conforms to the passive server model.
We use a fixed distributed manager (FDM) algorithm for maintaining coherence [31], which is general enough
to encompass many software and hardware based DSM designs [16, 9, 21, 29]. We use a simple method
to ensure that interactions are atomic, as prescribed in the passive server model. We introduce a fecovery
scheme where the only directory information needed to correctly recover a block is an ownership timestamp
maintained by every node. Our design eliminates most message-passing dependencies, leaving only those
dependencies due to transfers of blocks of data. Our design can be implemented on a hardware DSM by re-

placing the directory by a custom recoverable directory. No other changes need to be made to the hardware.

processor|

directory | NetWork L
' interface

memory

Figure 3: Conceptual organization of DSM processing node.
4.1 Basic system model

Our target DSM system consists of an arbitrary number of processing nodes connected by a general purpose
interconnection network. As illustrated in Figure 3, conceptually a processing node consists of a processor
and memory connected to the network through a remote data interface. The remote data interface is respon-
sible both for communicating with other processing nodes, and keeping its own node’s shared data coherent
by keeping a directory of remote blocks. In a hardware implementation, the directory usually keeps track
of cache blocks by snooping on the system bus. In a software implementation (shared virtual memory), the

directory is part of the virtual memory’s page table.

In the FDM algorithm, every memory block is assigned to a home node. Any request for access to a
block is sent to the home node, which then forwards the request to the owner of the block. In the passive
server model, every node contains one or more user processes, and a local server process for every block of
shared data. In addition, for every block for which a node serves as the home node, it contains a manager
server process. To simplify our treatment, unless otherwise noted, we combine all the local block server
processes on a node into one access server. Likewise, all manager servers on a node are combined into one
manager server process. Since we are concerned with inter-node communication, we do not need to consider
the messages between the user processes and their local access server. These simplifications restrict us to

considering only recovery schemes that roll back all the activities of the combined servers as a unit.

The interactions that can occur in the FDM coherence scheme are illustrated in terms of the simplified

passive server model in Figure 4. Interactions are initiated by a read or write fault on a user process. An

clean dirty

read read
local recvé‘block) Irecv(block)
node L | -> >R
manager block block
node M
remote CS+ CS++
node R W->R

(@) (b)

clean dirty

write cs=0 write cs=0
local recv(block) recv(block)
node L >WorR->W >WorR->W
manager
node M

block block

remote
nodes R R->1 W->1 W->1

Figure 4: Possible interactions during accesses in a fixed distributed manager DSM.

interaction consists of an event in each server and the dependencies between event. Next to the graphical
representation of an event, the state changes of that event are shown. A node can either have writable access
(W), read-only access (R), or no access (I) to a block. When a node gains writable access to a block, it sends
invalidations to all other nodes that have a copy. A copyset (indicated by “cs” in the figure) keeps track of
other nodes with a copy to eliminate unnecessary invalidations. In a system with limited cache space per
node, any of the interactions may include an additional writeback of a replaced block to its home node. Only
causal dependencies are shown in the figure; for every causal dependency there is a corresponding backward
dependency. Next we show that, by carefully constructing our recoverable DSM system, we can eliminate

all backward dependencies and many causal dependencies.

Wix)
Node A - - waiting- - - - - -

ask read
Node M

l
U
forward read\
Node B n f
)

Figure 5: Situation resulting from an incomplete request.

4.2 Maintaining atomicity of server events

The passive server model treats a“server’s whole response to a request message as an atomic event to be able
to avoid issues of deadlock and spurious messages caused by partially completed interactions. Consider the
situation in Figure 5, where a request for write access from node A has been forwarded, by the accesses
block’s manager on node M, to node B. If Node B or Node C rolls back to its previous checkpoint while
handling the request, the interaction is aborted and Node A will wait indefinitely for the reply from Node B.
If Node A rolls back while waiting, it will receive an unexpected reply message from B after the rollback.
Analogous situations would occur if one node rolled back to a checkpoint inside the interaction, while the
others continued. In the message-passing model, consistency is guaranteed by the dependencies introduced
by the messages from dependencies from node A to the manager node M and from node M to node B.

However, we would like to be able to eliminate these dependencies in our DSM system.

To maintain atomicity, the system should never roll back to a global state with partially completed events.
It is simple to constrain checkpoints to occur only outside of interactions, so that a node cannot roll back to
a state inside an interaction. It is not possible to delay a rollback until the end of an interaction, however. A
request numbering scheme can be used to handle spurious messages. In the example of Figure 5, if Node A
assigns a unique number to the request message, and sequence number is propagated through the requests to
the reply message, then if Node A rolls back, it can reject the reply as spurious. The simplest way to avoid
the deadlock situations is to always roll back a node if it is waiting for a reply when it receives notice that
another node has rolled back. This scheme can be improved by coding the request interaction so no state

is permanently saved until after the last reply has been received. Then the request can simply be aborted,

10

avoiding a rollback. To avoid that nodes not involved in an interrupted interaction abort, nodes waiting fora
reply can instead continue to wait for a fixed amount of time, and abort if a reply is not received. For.example,
if Node B rolls back before sending the reply, all other nodes in the system that are waiting for a reply would
set a timer. In the absence of other rollbacks, all nodes except A would probably receive the reply before
timing out. Node A would time out, abort, and retry the request. Note that since interactions are relatively

short events, most of the time it will not be necessary to abort any requests to maintain atomic execution.

4.3 Maintaining ownership timestamps

As long as concurrent writes by two nodes to the same block are not allowed, all modifications to any block
in a DSM system can be totally ordered. The node that modified a block last is considered its owner and
supplies a copy of that block to any other node that needs access. When one or rﬁore nodes roll back, the
node that had ownership of a block latest in time before the global checkpoint should receive ownership after
rollback. Many of the dependencies between events in an interaction are there to maintain this ownership

consistency.

By implementing an ownership timestamp scheme where every node keeps track of the last time it be-
came owner of a block, we can eliminate these dependencies. Furthermore, the scheme allows all directory
information besides the ownership timestamps to be lost after rollback without affecting correct execution.
As illustrated in the example of Figure 6a, every time ownership of a block is transferred, the old owner sends
its current value of that block’s ownership timestamp to the new owner. Upon receiving the value, the new
owner increments it, and then stores it as its ownership timestamp for the block. This procedure guarantees
that the current owner of a block always possesses the largest ownership timestamp for that block. Periodi-
cally, when the timestamp overflows, all nodes need to synchronize to reset their timestamps to ensure correct

ordering.

As long as the system maintains ownership timestamps, no other block state information is needed for
correct operation. If no other ownership information is available, on a miss to a block the owner can be found
by gathering all ownership timestamps from all nodes, and selecting the largest. As long as a node maintains

a record of the blocks it is certain it owns, erroneous ownership information can be tolerated. A request for

11

W(x) R(X)
NodeA O3 | ot++=6 Node A o5 |
(iHV)\ / 5 .)
mgr node ow=? max(5,6,3)=6 ow=B
mgr node v \\ﬁ f \ /
ot=5 NodeB 2=0
3
Node B ot=5 Node C ot=3 \ /

a) transfer of ownership

b) recovery of ownership information on manager

Figure 6: Maintaining ownership timestamps during ownership transfers and during recovery.

access to a block that might not be owned by a node is rejected, and the true owner is found by using the
ownership timestamps. The copyset maintained by the owner of every block is an optimization which limits
the number of invalidations that need to be sent out, but is not necessary for correctness. Furthermore, the
copyset on a node may contain a superset of all the other nodes that actually have a copy of a block. The only
consequence is that unneeded invalidations are sent to some nodes. Ata high performance penalty, even the

access right information can be eliminated without affecting correctness by treating every access to a shared

block as a miss.

To make a DSM system recoverable, only the ownership timestamps and the data in all blocks are check-
pointed. After rollback, all information about the state of a block is set to unknown. As shown in the example
of Figure 6b, the first access to a block after rollback recovers its directory information. When a block with
an unknown owner is first accessed, the ownership timestamps are used to determine the owner. Ownership
information is updated so that further accesses do not need to use the ownership timestamps. When exclu-
sive write access is needed to a block with an unknown copyset, all other nodes are sent invalidates and the
copyset is changed from unknown to empty. Gradually, all ownership and copyset information is updated,

and the original DSM algorithm is used for further accesses.

12

4.4 Eliminating dependencies

We now analyze the FDM algorithm to ascertain which dependencies can be eliminated when using owner-
ship timestamps and the passive server model. Consider the role of the manager server in an interaction. On
a read interaction, the manager merely forwards the request. The state on the manager’s node (node M) is
the same before the interaction as afterwards. If node M rolls back, the ownership information it maintains
is lost, but it can be recovered by comparing the ownership timestamps on all nodes. Therefore all depen-
dencies involving node M in a read interaction can be eliminated. In a remote write interaction, node M
changes state; it records the new owner of the block. If node M rolls back, it loses ownership information,
so the timestamps are used to ﬁnd the owner. If another node rolls back, node M may contain erroneous
ownership information. Any request that is routed to the wrong owner by M will be rejected however, and
the timestamps will be used to find the correct owner. So again we can ignore all dependencies with node
M. Therefore, by using ownership timestamps, the function of the manager has been made redundant, and

does not have to be considered for rollback to a consistent state.

Having eliminated the dependencies with the node that contains a block’s manager, we can now analyze
interactions solely in terms of the dependence between the local (L) and remote (R) nodes. In a remote read
access to a clean block (Figure 4a), the state of node R is not affected by the interaction, eXcept for the
addition of a member to the copyset. When node L rolls back, the state of the recovery line is the same as
if node R also rolled back, except for the extra member of the copyset. Since the copyset is allowed to be a
superset of all the nodes that have readable copies, the recovery line is consistent. So the backward depen-
dency L -8, R can be eliminated. When the remote read access is to a dirty block (Figure 4b), a rollback of
node I will cause a situation where node R has lost write permission without guaranteeing that a copy of the
dirty block has been saved on another node. However, node R is still the owner, so any further requests will
be supplied from its copy of the block. Therefore the dependency L 5, Rean again be eliminated. So, on

a remote read, there remains only the causal dependency, R <, L, from the remote node to the local node.

Next, we consider a remote write access (Figure 4c, 4d). Ignoring invalidations, the interactions for
a clean and dirty write are identical, with the access permission of the block on the remote node changing

from writable to read-only. If node L rolls back and re-executes the write access, the request is directed by

13

Table 1: Address trace characteristics.

program | description tot. num. of data reads data writes
references total shared total shared
gravsim | N-body simulator | 92,178,814 || 33,266,880 | 12,484,455 6,392,078 251,694
fsim fault simulator 149,918,375 || 50,950,933 | 39,326,911 3,958,919 999,127
tgen test generator 101,264,382 || 32,613,809 | 16,550,450 4,461,889 642,796
pace circuit extractor 87,861,165 || 23,266,576 | 1,286,787 || 7,842,338 348,524
phigure global router 132,998,231 || 38,244,233 | 4,281,207 || 11,530,981 | 1,876,400

the manager to node R. Node R rejects the request because it has given up ownership. This rejection will
cause the ownership timestamps to be used to find the correct copy of the block. Therefore the dependency

L £ Ris eliminated. The causal dependency R ©, [remains since it transmits a block of data.

If the block is readable by more than one remote node when the local node asks for write access, all the
copies in the remote nodes will be invalidated. A node L can safely roll back past an interaction in which
it invalidated node R'. In the global state after rollback, it will appear as if node R’ has been invalidated
spontaneously and at the next access node R’ can ask the owner for a new copy of the block. Therefore there
is no dependency L — R'. If node R’ rolls back past the interaction, the access rights of all its blocks are
set to unknown. Therefore any access to a block that was invalidated before rollback will ask the owner for
a new copy, just as if the block had been invalidated. So the remaining R’ — L dependency is eliminated,

resulting in a dependence-free invalidation interaction.

Figure 7 shows the dependencies eliminated using the passive server model and ownership timestamps.
All backward dependencies, as well as all dependencies due to invalidations are eliminated. The only depen-

dencies remaining are those due to data being transferred to the requester on a remote access.

To determine the reduction in dependencies caused by using our scheme we performed trace-driven sim-
ulations with multiprocessor address traces from five parallel scientific programs running on an Encore Mul-
timax. The traces were generated by the TRAPEDS address tracer from execution on seven processors. Each

trace contains at least 10 million memory references per processor [39]. Table 1 describes the characteristics

of the traces used.

14

remote read

local
— = causal
manager 9 O dependence
- -3 logging
dependence
remote
message DSM
passing
remote write invalidate
1
] =>0 —>
message DSM message DSM
passing passing

Figure 7: Reduced dependencies.

15

30000 | .
o - -¢ total message-passing

o - -0 causal message-passing »

—— recoverable DSM P
20000 | , .

- -

10000 | NS -

dependencies per million accesses
\
b

4 16 64 256 1k 4k
block size (bytes)

Figure 8: Frequency of dependency comparison

Figure 8 presents the frequency of dependencies in the message-passing model and in the DSM passive
server model using ownership timestamps. Our DSM model has more than a sixfold decrease in dependen-
cies over the message passing model. An implementation using this model therefore significantly reduces
dependency tracking overhead and/or the probability of rollback propagation. The causal dependencies for
the message-passing model are also plotted in the Figure. This is the number of dependencies that would
need to be considered in the message-passing model if logging is implemented. In the DSM model, all back-
ward dependencies are eliminated, so logging need never be used. Even then, there still is a decrease of these

causal dependencies by a factor of 3.5.

4.5 Implementation issues

The high-level design described above can be implemented directly in a shared virtual memory implemen-
tation of DSM on a network of workstations. The DSM coherency protocol needs to be augmented to allow
broadcast for ownership timestamps in case the manager has lost ownership information. To allow rollback
recovery, it is necessary to have the ability to checkpoint the state of the CPU and the virtual memory to stable

storage. Various software methods exist to achieve this [14, 32]. The only enhancement needed is the abil-

16

ity to also checkpoint and restore ownership timestamps. Depending on whether coordinated or independent
checkpointing is chosen, checkpoint coordination [14, 30] or dependency tracking [37] algorithms also have

to be implemented.

When specialized hardware is used to implement DSM, several additional issues need to be considered
when implementing rollback recovery. In hardware-based DSM systems, memory coherence is maintained
at the cache block level [9, 21, 29]. We map our passive server model onto such systems by considering
the directory/communications hardware as implementing both the access server and manager server for a
node, and modeling the rest of the node as one monolithic user process. Note that even in systems such as
DASH [29], where a nodes consist of a collection of multiple processors, caches, and memory, we still model

all the components besides the directory as one user process.

In hardware DSM, checkpointing can still be performéd by software. All other functions can be inte-
grated in a custom directory controller. No other modifications to the node hardware are necessary. Inter-
node communication occurs between caches through the directory, allowing it to perform any required de-
pendency tracking and coordination functions. Likewise, the extension to the protocol to allow operation
with ownership timestamps is implemented in the directory. The directory is responsible for saving owner-

ship timestamps during checkpointing and restoring them after rollback.

One additional complication in hardware DSM is the necessity to checkpoint all the data maintained on
the processing node, which includes processor registers, processor cache, and main memory. All the pro-
cessor internal state, including registers, are be simply flushed to the main memory via software before check-
pointing. The coherency mechanism between the processor cache and the I/O controller ensures that the con-
tents of all memory that resides locally will be saved on a checkpoint, even if the contents reside in a dirty
state in the cache. However, there may also be blocks present in the cache which are managed by remote
nodes. To avoid having to checkpoint these blocks, they can be flushed to their respective home nodes before
a checkpoint is taken. This solution, however, causes a large amount of traffic on the network before every
checkpoint. To avoid this overhead, the directory controller needs to be modified to intercept these flushes,
and store their contents in a reserved portion of the local virtual memory, where they are subsequently saved

as part of the checkpoint. After a rollback the directory controller again has to intervene, to restore the con-

17

W(x)

inva \inv b / ack b ack a

Figure 9: Atomic event between write initiation and last acknowledgement.

tents of the affected blocks.

To reduce the performance impact of remote memory access latency ina DSM system, a relaxed memory
consistency model can be employed [1, 19]. In the next section we describe a design that, by using lazy
release consistency, reduces further the dependencies that need to be considered for correct rollback. Here we
show that the release consistency model used in DASH, where invalidate acknowledgements can be delayed,
fits the passive server model, and therefore can use the shared-memory dependencies of the FDM algorithm.
In DASH, a write interaction can complete before it receives all the acknowledgements from the invalidates
it sent out. While invalidate acknowledgements to a block are pending, all other accesses from other nodes
to the block are delayed. Likewise, certain special release interactions on the local node are also delayed. To
allow release consistency in the passive server model, it is necessary to model the individual blocks in the
access server as separate processes. Since all requests for access to a block are denied while an invalidate is
pending, and accesses to other blocks are handled by other block access servers, it is now possible to extend
the write interaction by considering the period from the initiation of the write access to the receipt of the last
acknowledgement as one event (see Figure 9). Therefore, checkpointing cannot occur while an invalidate is
pending, and a node with pending invalidates may have to roll back if another node that has not yet replied

rolls back.

5 Recoverable DSM with Lazy Release Consistency

In software DSM systems, there is a high overhead for every message sent between nodes. To reduce the

number of messages needed to maintain consistency, lazy release consistency [26] has been developed. The

18

model is successful in reducing overhead of maintaining consistency, approaching the performance of a bus-
' based multiprocessor in a software-based implementation on an asynchronous transfer mode (ATM) network
of workstations [11]. The lazy release consistency model has the additional advantage that inter-node com-
munication can be restricted to synchronization accesses, thereby dramatically‘reducing the number of de-

pendencies needed to assure correct rollback recovery.

5.1 Memory consistency models and rollback

The consistency model traditionally used in shared memory systems, sequential consistency, guarantees that
all memory accesses appear to execute atomically and in program order [28]. The model was developed to
reflect the programmer’s intuitive understanding of the correct execution of a multiprocessor. If sequential
consistency is not maintained, synchronization and mutual exclusion using loads and stores to lock variables
will not necessarily function correctly. Lamport defined sequential consistency as follows [28]: “[A system is
sequentially consistent if] the result of any execution is the same as if the operations of all the processors were
executed in some sequential order, and the operations of each individual processor appear in this sequence

~ in the order specified by its program.”

One can view the dependencies needed to ensure correct rollback in a traditional system as those nec-
essary to maintain sequential consistency. For example, in Figure 10 sequential consistency is violated by
allowing node A to roll back past a dependency with node B. Node A sets variable z = 0, followed by z = 1
some time later. Then node B reads z twice, storing the results in a and b. In the time between the two reads
on node B, A rolls back to the checkpoint taken before the second write. On node B, the second read of =
occurs before the rolled-back node A reassigns z = 1. The outcome is that a = 1 and b = 0, which, if all
operations were executed in sequential order, is only possible if the assignment z = 1 came before z = 0.

This is not the order specified by the program on node A, therefore sequential consistency is violated.

The strong sequential consistency requirements prevent systems designers from making certain perform-
ance optimizations. By using a more relaxed consistency model, accesses to remote memory locations can
be delayed and reordered, increasing performance. Furthermore, it is possible to define a relaxed memory

consistency model so that any system using it appears sequentially consistent to most programs. The most

19

checkpoint

I
a=Xx b=x b=0

Figure 10: A violation of sequential consistency caused by a rollback past the read of a shared variable by a
remote node.

popular relaxed consistency model is release consistency [19, 26], where the happens-before-1 relation [1] is
enforced. In the happens-before-i relation, intra-processor data accesses are ordered by program order, and
inter-processor accesses are ordered by pairs of release and acquire accesses to synchronization variables.
For example, if processor A unlocks lock variable s and processor B later locks s, then all data accesses
before the unlock on A are ordered before all data accesses after the lock on B. As long as the application
programmer ensures that the program does not have any data races, a release consistent system is indistin-
guishable from a sequentially consistent system. A data race occurs when two data operations access the

same memory location, they are not both reads, and they are not ordered by happens-before-1.

The conditions that allow arelease consistency system to appear sequentially consistent also allow certain
dependencies to be removed from those necessary for correct rollback. Consider the example in Figure 11a.
Memory location z is written on processing node A. It is now guaranteed that node B will not read this
location, until node A releases (unlocks) synchronization variable s and node B acquires (locks) it. So there
will be no dependencies due to the read of variable z until the acquire. When node B does read variable z, it
is guaranteed to read the value written on A before the release, since node A may not write z after the release.
Therefore, the dependency due to the read of = on B is covered by the dependency due to the acquire and
can be removed. If node A rolls back to a point after the release, it does not change the value of z, so node

B does not have to roll back. Therefore, the only dependency is due to the acquire of variable s.

If coherence is maintained separately for every memory location, the only dependencies in a data-race-
free system are those due to acquires of variables. Unfortunately, when coherence is maintained for blocks

of memory locations, false sharing will introduce additional dependencies [17]. In Figure 11b, the situation

20

W(x) Rel(s) W) Rel(s)

E . — =, dependency
sync E sync E - - == interaction without
5 Y : dependency
Acq(s) R(x) R(x’) Acq(s) R(x)
a) dependency due to data read is b) dependency due to false sharing read
covered by acquire dependency is not covered by acquire dependency

Figure 11: Dependencies in data-race-free programs.

is the same as in the previous example, except a read of location z', which shares a block with z, occurs on
B before the acquire. Since variable z is now known to node B before the acquire, it causes a dependency.
Therefore, the data-race-free condition is not enough to restrict dependencies to synchronization accesses.
However, for data-race-free programs, a relaxed memory consistency model can be implemented that appears

sequentially consistent, and does restrict dependencies to synchronization interactions.

5.2 Design of recoverable DSM with lazy release consistency

To guarantee correct rollback while only tracking dependencies due to synchronization accesses, it is nec-
essary to eliminate false sharing. Multiple writer protocols are used in software distributed shared memory
systems to eliminate excessive transfer of blocks due to false sharing [7]. In a multiple writer protocol, two or
more nodes can simultaneously update their local copy of a shared block. For every write, a record describ-
ing the modification (called a diff) is created. Only these diffs are propagated to other nodes, guaranteeing

that the contents of locations in a block that have not been updated do not need to be transmitted.

To further reduce message traffic in DSM systems, lazy release consistency (LRC) with a multiple writer
protocol has been impleménted [26, 13]. LRC directly implements the happens-before-1 relation by using
vector timestamps. Execution on processors is divided into intervals by synchronization accesses. Every pro-
cessor keeps track of which intervals it is aware by updating its vector timestamp on any interaction. On an
acquire, the vector timestamps are used to propagate write notices of all modifications to memory locations

that occurred before the acquire in the happens-before-1 order. Received write notices have to be stored lo-

21

Acq W(x) Rel W(x’)

Node A])

wn(X) false sharin

diff(X) o 9
Node B | | ‘

A W(y) Rel
cq W(y) Re wnex.Y) »
diff(Y) iff(X)
Node C] :
Acq R(x)

Figure 12: False sharing in LRC algorithm.

cally, in case they need to be propagated to another node. Periodic garbage collection deletes write notices
have been propagated to all nodes. There is no concept of ownership of memory blocks; all the information
on the contents of pages is transferred directly from the releaser to the acquirer of a lock. When an update
strategy is used with LRC, interaction between processors, and therefore dependencies, only occur at ac-

quires.

Even in LRC with multiple writers and an update protocol [13], however, there is a potential dependency
with every other node ét every acquire of the lock. Consider the example in Figure 12. Processor A writes
to location z in block X, then node B writes to location y in block Y, and finally node C reads location z.
All updates are ordered by one lock. Updates, in the form of diffs, are transmitted at the time of the acquires
of the lock. In the original protocol [13, 26], when node C acquires the lock, it receives write notices for
blocks X and Y, but only receives a diff for block Y. It has to fetch the diffs for block X from its last writer,
node A. If node A writes a variable 7’ in block X before the interaction, its new value will be propagated.
Therefore there is still false sharing of location z’ between nodes A and C. To eliminate all false sharing, it
is necessary to modify the protocol to maintain diffs together with their corresponding write notices. In the
example, the new value of z would be received by node C from node B with the write notice for page X,

and there would be no interaction with node A.

In LRC, since locks do have to be sequentially consistent with each other, they are managed separately
from data blocks. Every lock has a statically assigned manager. This manager keeps a last_req record of the

node that most recently requested the lock. When a new request comes in from an acquire, it forwards it to the

22

acquire acquire

local waiting /™ Vememee e >< 2
node L
Vt \
vt last req. timestamp
manager last_req =L write notices processor id (R) i
node M diffs !
. vt ,’
I
remote
...... - - _>(i
node R waiter = L
release release
a) acquire interaction in LRC algorithm b) extra message to support

rollback recovery

Figure 13: Acquire interaction in LRC algorithm.

node specified in last_req, and the“n changes last_req to the new requester. In our algorithm, the only interac-
tion occurs on an acquire. The interaction is shown in Figure 13a. The requester sends its vector timestamp
(vt) to the manager for the lock, which forwards it to the node that last held the lock. If this node has not
released the lock, the request is delayed until the release. Otherwise the request is fielded immediately. The
releaser uses the received vector timestamp to decide which write notices to send to the acquirer. All write
notices, their corresponding diffs, and the requester’s vector timestamp are then sent to the acquirer, which

incorporates this information in its directory before continuing.

InourLRC checkpdinting and rollback algorithm, most of state of the node, including all memory blocks,
write notices, and diffs are checkpointed. As described below, however, the last_req records in the lock man-
agers, and any record of a waiter at a lock that has not been released are not checkpointed and restored. To
conform to the passive server model, the acquire interaction needs to be atomic. In the previously described
scheme for maintaining atomicity of interaction events, any node that is waiting for a reply rolls back when
it becomes aware of a rollback in the system. This method is not practical in the LRC case, since an acquire
may be waiting for a long time while another node holds its lock. To make the acquire interaction atomic,
the node holding the lock replies with its id when it first receives the acquire request. (see Figure 13b). The
acquire request is recorded by the receiving node but is not saved as part of any checkpoint. If the requester
node receives notice that the node holding the lock has rolled back and lost the acquire request, the requester
also rolls back. This scheme ensures that all nodes waiting on an acquire do not wait indefinitely, but re-send

their request if the target node rolls back.

23

0
2@ 4000
Q .
§ - - - sequential consistency e
S 3000 L —— lazy release consistency - -7 |
E S~o e - - -
o
8 2000 | -
0
Q2
o
5
o] 1000 |]
c
o
a
3
0 T - T T T T T
4 16 64 256 1k 4k
block size (bytes)

Figure 14: Dependency frequencies with different memory consistency models.

To eliminate the dependencies with the node managing the lock, a last requester timestamp, similar to the
ownership timestamp described earlier, is implemented. As shown'in Figure 13b, when a node receives an
acquire request, it sends its last requester timestamp and its node id to the new requester. The last requester
information maintained by the lock managers is not checkpointed, and after rollback, broadcast for the last
requestér timestamps is used to recreate the record. Since the lock manager is now redundant after rollback,
only the dependencies between the acquiring node and the releasing node remain. There is obviously a causal

dependency from the releaser to the acquirer when it sends the write notices. The backward dependency also

remains.

By only communicating during synchronization, our rollback scheme for LRC significantly reduces the
number of dependencies that need to be considered. Figure 14 shows the results of simulations with the
shared-memory address traces for sequential consistency and lazy release consistency. With lazy release con-
sistency, there are two dependencies, one causal, and one backward, per acquire. The backward dependencies
can be eliminated if the release messages are logged. The number of acquires, and therefore the frequency of
dependencies, does not depend on the block size. From our simulations, the frequency of dependencies with
lazy release consistency is about 1000 per million accesses. This compares, for 64-byte blocks, to a frequency

of 2400 for sequential consistency, and a frequency of about 10000 if every message causes a dependency.

24

6 Conclusions

Checkpointing and rollback recovery in distributed message passing systems is a mature area of research. In
a message passing system, every message causes a dependency from the sender of the receiver. In a shared
memory model, even if implemented on top of message-passing, some of the messages do not need to cause
dependencies. Previous work, both in checkpointing [3, 44, 43] and distributed debugging [20, 33] has as-
sumed a less strict dependency pattern for shared memory than message passing. By using the passive server
model, our work shows that the dependency pattern for shared memory can be derived from that for message
passing, and therefore can be used in architectures where a shared memory image is provided via physically

distributed memory.

We used the FDM algorithm to show that only the dependencies due to the direct sharing of memory
blocks need to be considered if a recoverable DSM is designed so it can tolerate the loss of ownership infor-
mation in a block’s home directory. Similar analysis can be performed on other algorithms for maintaining
consistency. Lazy release consistency with multiple owners can be used to further limit dependency overhead
to acquire/release interactions. However, its complexity is too high to be implemented in hardware DSM.
In software DSM, where messaging overhead is higher, LRC increases performance, even without check-
pointing. In such systems, the designer of a rollback recovery scheme can take advantage of the reduced

number of dependencies to decrease overhead.

Acknowledgements

Our work benefited from discussions with Alain Gefflaut at IRISA, and Gaurav Suri, Yi-Min Wang and Sujoy

Basu at Illinois.

References

[1] S. V. Adve and M. D. Hill, “A unified formalization of four shared-memory models,” [EEE Trans. on
Parallel and Distributed Systems, Vol. 4, No. 6, pp. 613-624.

25

[2] R. E. Ahmed, R. C. Frazier, and P. N. Marinos, “Cache-aided rollback error recovery (CARER) algo-
rithms for shared-memory multiprocessor systems,” Proc. 20th Int. Symp. on Fault-Tolerant Comput-
ing, 1990, pp. 82-88.

[3] M. Banétre, A. Gefflaut, P. Joubert, P. Lee, and C. Morin, “An architecture for tolerating processor fail-
ures in shared-memory multiprocessors,” Tech. Report 707, IRISA, Rennes, France, Mar. 1993.

[4] P. A. Bemnstein, “Sequoia: a fault-tolerant tightly coupled multiprocessor for transaction processing,”
Computer, Vol. 21, No. 2, Feb. 1988, pp. 37-45.

[5] A. Borg, W. Blau, W. Graetsch, F. Herrmann, and W. Oberle, “Fault tolerance under UNIX,” ACM
Trans. on Computer Systems, Vol. 7, No. 1, Feb. 1989, pp. 1-24.

[6] L.Borrmann and M. Herdieckerhoff, “A coherency model for virtually shared memory,” Proc. Int. Conf.
on Parallel Processing, 1990, pp. II-252-11-257.

[7] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, “Implementation and performance of Munin,” Proc.
13th ACM Symp. on Operating Systems Principles, 1991, pp. 152-164.

[8] K. M. Chandy and L. Lamport, “Distributed snapshots: determining global states of distributed
systems,” ACM Trans. on Computer Systems, Vol. 3, No. 1, Feb. 1985, pp. 63-75.

[9] D. Chaiken and A. Agarwal, “Software-extended coherent shared memory: performance and cost,”
Proc. 21st Int. Symp. on Computer Architecture, Apr. 1994, pp. 314-324.

[10] M. Clarke, “MPP comes to the desktop,” Electronic Engineering Times, 5 Sep. 1994, pp. 1, 37.

[11] A.L.Cox et al., “Software versus hardware shared-memory implementations: a case study,” Proc. 21st
Int. Symp. on Computer Architecture, Apr. 1994, pp. 106-117.

[12] E Cristian and F. Jahanian, “A timestamp-based checkpointing protocol for long-lived distributed com-
putations,” Proc. 10th Symp. on Reliable Distributed Systems, 1991, pp. 12-20.

[13] S. Dwarkadas, P. Keleher, A. L. Cox, and W. Zwaenepoel, “Evaluation of release consistent software
distributed shared memory on emerging network technology,” Proc. 20th Int. Symp. on Computer Ar-
chitecture, May 1993, pp. 144-155.

[14] E. N. Elnozahy, D. B. Johnson, and W. Zwaenepoel, “The performance of consistent checkpointing,”
Proc. 11th Symp. on Reliable Distributed Systems, 1992, pp. 39-47.

[15] M. J. Feeley, J. S. Chase, V. Narasayya, and H. M. Levy, “Integrating coherency and recovery in distri-
buted systems,” Proc. Symp. on Operating Systems Design and Implementation, Nov. 1994.

[16] B.D.Fleischand G.J. Popek, “Mirage: a coherent distributed shared memory design,” Proc. 12th ACM
Symp. on Operating Systems Principles, Dec. 1989, pp. 21 1-223.

[17] A. Gefflaut, personal communication.

(18] A. Gefflaut, C. Morin, and M. Banétre, “Tolerating node failures in cache only memory architectures,”
Proc. Supercomputing ’94, Nov. 1994.

26

[19] K. Gharachorloo ez al., “Memory consistency and event ordering in scalable shared-memory multipro-
cessors,” Proc. 17th Int. Symp. on Computer Architecture, 1990, pp. 15-26.

[20] L. Gunaseelan and R. J. LeBlanc, “Event ordering in a shared memory distributed system,” Proc. 13th
Int. Conf. on Distributed Computing Systems, 1993, pp 256-263.

[21] M. D.Hill, J. R. Larus, S. K. Reinhardt, D. A. Wood, “Cooperative shared memory: software and hard-
ware support for scalable multiprocessors,” Proc. 5th Int. Conf on Architectural Support for Program-
ming Languages and Operating Systems, Oct. 1992, pp. 262-273.

[22] R.]Jalili, F. Heskens, D. M. Koch, and J. Rosenberg, “Operating system support for object dependencies
in persistent object stores,” Proc. Workshop on Object-oriented Real-time Dependable Systems, Oct.
1994.

[23] G. Janakiraman and Y. Tamir, “Coordinated checkpointing-rollback error recovery for distributed
shared memory multicompuiters,” Proc. 13th Symp. on Reliable Distributed Systems, Oct. 1994, pp. 42-
51.

[24] B. Janssens and W. K. Fuchs, “Relaxing consistency in recoverable distributed shared memory,” Proc.
23rd Int. Symp. on Fault-Tolerant Computing, Jun. 1993, pp. 155-163.

[25] B.Janssens and W. K. Fuchs, “Reducing Interprocessor Dependence in Recoverable Distributed Shared
Memory,” Proc. 13th Symp. on Reliable Distributed Systems, Oct. 1994, pp. 34-41.

[26] P. Keleher, A. L. Cox, and W. Zwaenepoel, “Lazy release consistency for software distributed shared
memory,” Proc. 19th Int. Symp. on Computer Architecture, 1992, pp. 13-21.

[27] R. Koo and S. Toueg, “Checkpointing and rollback-recovery for distributed systems,” IEEE Trans. on
Software Engineering, Vol. SE-13, No. 1, Jan. 1987, pp. 23-31.

[28] L. Lamport, “How to make a multiprocessor computer that correctly executes multiprocess programs,”
IEEE Trans. on Computers, Vol C-28, No. 9, Sep. 1979, pp. 690-691.

[29] D.Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, J. Hennessy, “The directory-based cache coherence
protocol for the DASH multiprocessor,” Proc. 17th Int. Symp on Computer Architecture, 1990, pp. 143—
159.

[30] K. Li, J. F. Naughton, and J. S. Plank, “Checkpointing multicomputer applications,” Proc. 10th Symp.
on Reliable Distributed Systems, 1991, pp. 1-10.

[31] K.Liand P. Hudak, “Memory coherence in shared virtual memory systems,” ACM Trans. on Computer
Systems, Vol. 7, No. 4, Nov. 1989, pp. 321-359.

[32] M. Litzkow and M. Solomon, “Supporting checkpointing and process migration outside the UNIX ker-
nel,” Proc. Usenix Winter Conf., 1992.

[33] R. H. Netzer, “Optimal tracing and replay for debugging shared-memory parallel programs,” Proc. 3rd
ACM/ONR Workshop on Parallel and Distributed Debugging, 1993, pp. 1-11.

[34] N.Neves, M. Castro, P. Guedes, “A checkpoint protocol for an entry consistent shared memory system,”
Proc. 13th ACM Symp. on Principles of Distributed Computing, Aug. 1994.

27

[35] A. Nowatzyk et al., “The S3.mp architecture: a local area multiprocessor,” Proc. 5th ACM Symp. on
FParallel Algorithms and Architectures, July 1993, pp. 140-141.

[36] G.G. Richard III and M. Singhal, “Using logging and asynchronous checkpointing to implement recov-
erable distributed shared memory,” Proc. 12th Symp. on Reliable Distributed Systems, 1993, pp 58-67.

[37] R. E. Strom and S. Yemeni, “Optimistic recovery in distributed systems,” ACM Trans. on Computer
Systems, Vol. 3, No. 3, Aug. 1985, pp. 204-226.

[38] C.B. Stunkel et al., “The SP1 high-performance switch,” Proc. Scalable High-Performance Computing
Conf., May 1994, pp. 150-157.

[39] C.B. Stunkel, B. Janssens, and W. K. Fuchs, “Address tracing of parallel systems via TRAPEDS,” Mi-
croprocessors and Microsystems, Vol. 16, No. 5, 1992, pp. 249-261.

[40] G. Suri, B. Janssens, and W: K. Fuchs, “Reduced Overhead Logging for Rollback Recovery in Distri-
buted Shared Memory,” Proc. 25th Int. Symp. on Fault-Tolerant Computing, June 1995.

[41] Y-M. Wang and W. K. Fuchs, “Optimistic message logging for independent checkpointing in message-
passing systems,” Proc. 11th Symp. on Reliable Distributed Systems, 1992, pp. 147-154.

[42] Y-M. Wang and W. K. Fuchs, “Lazy checkpoint coordination for bounding rollback propagation,” Proc.
12th Symp. on Reliable Distributed Systems, 1993, pp. 78-85.

[43] K.-L.Wu, W.K. Fuchs, and J. H. Patel, “Error recovery in shared memory multiprocessors using private
caches,” IEEE Trans. on Parallel and Distributed Systems, Vol. 1, No. 2, April 1990, pp. 231-240.

[44] K.-L. Wu and W. K. Fuchs, “Recoverable distributed shared virtual memory,” IEEE Trans. on Comput-
ers, Vol. 39, No. 4, Apr. 1990, pp. 460-469.

28

